Many of the emissions from natural feedbacks are temperature-dependent. Given a likely temperature increase of at least 2° C by 2050 (see <u>http://ccdatacenter.org/documents/TempIncreaseExpectations.pdf</u>) it seems reasonable that cumulative emissions through 2100 from natural feedbacks will likely be in the range of 120-200 GTC (not including methane from methyl hydrates).

GHG Source	Carbon	Notes	Likely Temp	Likely Temp
		NULES	• •	<i>,</i> ,
	Store		Change by	Change by
	(GTC)		2100 (°C)	2200 (°C)
Feedbacks - GHGs				
Permafrost	1,600	Cumulative permafrost and wetland	.5	1.5
		emissions (about 55 GTC) could cut 1.5C		
		carbon budget 'by five years' ^{1,2}		
		Cumulative permafrost emissions could		
		be 120 GTC by 2100 ^{3,4,5,6,7}		
Soils		Cumulative emissions from soil carbon		
		could be as high as 55 GTC through 2050 ⁸		
Peat ^{9,10}	270 to	40% loss by 2100 (100 GTC)	.2	.5
	370	80% loss by 2200 (220 GTC)		
Surface waters		Cumulative methane emissions from		
		reservoirs could be about 30 GTC through		
		2060 and 60 GTC through 2100 ¹¹		
		"[G]lobally, lakes and manmade		
		"impoundments" like reservoirs emit		
		about one-fifth the amount of		
		greenhouse gases emitted by the burning		
		of fossil fuels" "[S]cientists have		
		found that this surge in aquatic plant		
		growth could double the methane being		
		emitted from lakes [(to 40% of current		
		fossil fuel emissions)] over the next 50		
		years." ¹²		
Forests		Forests will likely turn from sources to		
		sinks ^{13,14}		
Methyl Hydrates ^{15.16}	5,000 to			
	20,000			
Amazon	86			

Footnotes

	tland emissions could o	cut 1.5C carbon budget 'by	five years'				
That means account	That means accounting for the impacts of permafrost and wetlands takes around five years off the 1.5C budget.						
	And, as the table below shows, the budgets for the 1.5C overshoot and 2C scenarios are similarly reduced.						
	Control		Feedbacks includ	ncluded			
	Tonne of CO2	Years of emissions	Tonne of CO2	Years of emissions			
1.5C	720-929bn	20-25	533-753bn	14-20			
1.5C overshoot	723-947bn	20-26	522-771bn	14-21			
2C	1592-1974bn	43-54	1372-1776bn	37-48			
and "feedbacks incl emissions (based or	Table shows remaining carbon budget (from 2018 to 2100) for three temperature pathways for the "con and "feedbacks included" (right) scenarios. Carbon budgets are shown as tonnes of CO2 and as total ye emissions (based on 2017 global emissions). Table adapted from Comyn-Platt et al. (2018)						
	•	t and wetlands decreases					
		-wetland-emissions-could- missions from wetlands a					
targets	natural greenhouse e	missions from wettands a	no permairosts mean	for Paris Agreement			
July 9, 2018 by Simo	on Williams, Centre for	Ecology & Hydrology					
the Paris Agreemen	Global fossil fuel emissions would have to be reduced by as much as 20% more than previous estimates to the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, research has found.						
	The additional reductions are equivalent to 5-6 years of carbon emissions from human activities at current rates, according to a new paper led by the UK's Centre for Ecology & Hydrology.						
	paper led by the UK's (-		ivities at current rates,			
	ate Agreement aims to	-	blogy. temperature increase	e to well below 2 °C			
above pre-industria levels". The research, publis	ate Agreement aims to Il levels and to pursue of shed in the journal Nat	Centre for Ecology & Hydro	blogy. temperature increase ature increase to 1.5 ° y 9, 2018) uses a nove	e to well below 2 °C C above pre-industrial I form of climate model			
above pre-industria levels". The research, publis where a specified to The model simulatio	ate Agreement aims to I levels and to pursue of shed in the journal Nat emperature target is us ons estimate the natur	Centre for Ecology & Hydro o keep "the global average efforts to limit the temper cure Geoscience today (July	blogy. temperature increase ature increase to 1.5 ° y 9, 2018) uses a nove atible fossil fuel emissi t response to climate o	e to well below 2 °C C above pre-industrial I form of climate model ons.			
above pre-industria levels". The research, publis where a specified te The model simulatio greenhouse gas em Co-author Dr. Sarah	ate Agreement aims to I levels and to pursue of shed in the journal Nat emperature target is us ons estimate the natur issions, and the implica	Centre for Ecology & Hydro o keep "the global average efforts to limit the temper cure Geoscience today (July sed to calculate the compa	blogy. temperature increase ature increase to 1.5 ° y 9, 2018) uses a nove atible fossil fuel emissi t response to climate o el emissions. found that permafros	e to well below 2 °C C above pre-industrial I form of climate model ons. change, including their			
above pre-industria levels". The research, publis where a specified te The model simulatio greenhouse gas em Co-author Dr. Sarah emissions get more	ate Agreement aims to I levels and to pursue of shed in the journal Nat emperature target is us ons estimate the natur issions, and the implica of Chadburn, of the Univ and more important a ould make it much har	Centre for Ecology & Hydro o keep "the global average efforts to limit the temper cure Geoscience today (Jul- sed to calculate the compa- ral wetland and permafros- ations for human fossil-fue versity of Leeds, said: "We	blogy. temperature increase ature increase to 1.5 ° y 9, 2018) uses a nove atible fossil fuel emissi t response to climate o el emissions. found that permafros I warming targets.	e to well below 2 °C C above pre-industrial I form of climate model ons. change, including their t and methane			
above pre-industria levels". The research, publis where a specified te The model simulatio greenhouse gas em Co-author Dr. Sarah emissions get more "These feedbacks co reducing fossil fuel Co-author Prof Chri	ate Agreement aims to I levels and to pursue of shed in the journal Nat emperature target is us ons estimate the natur issions, and the implica of Chadburn, of the Univ and more important a ould make it much har burning."	Centre for Ecology & Hydro o keep "the global average efforts to limit the temper cure Geoscience today (July sed to calculate the compa- ral wetland and permafros ations for human fossil-fue versity of Leeds, said: "We as we consider lower globa	blogy. temperature increase ature increase to 1.5 ° y 9, 2018) uses a nove atible fossil fuel emissi t response to climate o el emissions. found that permafros I warming targets. and our results reinfor	e to well below 2 °C C above pre-industrial I form of climate model ons. change, including their t and methane rce the urgency in surprised at how large			

-	
3	"It [(permafrost thawing)] was first proposed in 2005. And the first estimates came out in 2011." Indeed, the
	problem is so new that it has not yet made its way into major climate projections, Schaefer says.""None of the
	climate projections in the last IPCC report account for permafrost," says Schaefer. "So all of them underestimate,
	or are biased low." "It's certainly not much of a stretch of the imagination to think that over the coming
	decades, we could lose a couple of gigatons per year from thawing permafrost," says Holmes But by 2100, the
	"mean" estimate for total emissions from permafrost right now is 120 gigatons, say Schaefer.
	http://www.washingtonpost.com/news/energy-environment/wp/2015/04/01/the-arctic-climate-threat-that-
	nobodys-even-talking-about-yet
4	CO2 loss by permafrost thawing implies additional emissions reductions to limit warming to 1.5 or 2 °C
	Eleanor J Burke1,4, Sarah E Chadburn2, Chris Huntingford3 and Chris D Jones1
	Published 9 February 2018 • © 2018 The Author(s). Published by IOP Publishing Ltd
	Environmental Research Letters, Volume 13, Number 2
	Abstract
	Large amounts of carbon are stored in the permafrost of the northern high latitude land. As permafrost degrades
	under a warming climate, some of this carbon will decompose and be released to the atmosphere. This positive
	climate-carbon feedback will reduce the natural carbon sinks and thus lower anthropogenic CO2 emissions
	compatible with the goals of the Paris Agreement. Simulations using an ensemble of the JULES-IMOGEN
	intermediate complexity climate model (including climate response and process uncertainty) and a stabilization
	target of 2 °C, show that including the permafrost carbon pool in the model increases the land carbon emissions at
	stabilization by between 0.09 and 0.19 Gt C year-1 (10th to 90th percentile). These emissions are only slightly
	reduced to between 0.08 and 0.16 Gt C year–1 (10th to 90th percentile) when considering 1.5 °C stabilization
	targets. This suggests that uncertainties caused by the differences in stabilization target are small compared with
	those associated with model parameterisation uncertainty. Inertia means that permafrost carbon loss may
	continue for many years after anthropogenic emissions have stabilized. Simulations suggest that between 225 and
	345 Gt C (10th to 90th percentile) are in thawed permafrost and may eventually be released to the atmosphere
	for stabilization target of 2 °C. This value is 60–100 Gt C less for a 1.5 °C target. The inclusion of permafrost carbon
	will add to the demands on negative emission technologies which are already present in most low emissions
	scenarios.
	http://iopscience.iop.org/article/10.1088/1748-9326/aaa138/meta
	[For 2 °C,] including the permafrost carbon pool in the model increases the land carbon emissions at stabilization
	by between 0.09 and 0.19 Gt C year–1 [B]etween 225 and 345 Gt C are in thawed permafrost and may
	eventually be released to the atmosphere for stabilization target of 2 °C. This value is 60–100 Gt C less for a 1.5 °C
	target. The inclusion of permafrost carbon will add to the demands on negative emission technologies which are
	already present in most low emissions scenarios.
5	Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw
	A new study for the first time quantify the process by which dissolved organic carbon released from thawing
	permafrost and released into streams and rivers is rapidly broken down by microbes into carbon dioxide and
	released to the air. The scientists estimate by 2100, between 5 to 10 Tg of organic carbon will be released from
	northern permafrost soils every year. Proceedings of the National Academy of Sciences September 28, 2015
	http://www.pnas.org/content/early/2015/10/21/1511705112.short
6	Significant contribution to climate warming from the permafrost carbon feedback
	According to our simulations, permafrost soils will release between 68 and 508 Pg carbon by 2100. We show
	that the additional surface warming generated by the feedback between permafrost carbon and climate is
	independent of the pathway of anthropogenic emissions followed in the twenty-first century. We estimate
	that this feedback could result in an additional warming of 0.13–1.69 °C by 2300. We further show that the
	upper bound for the strength of the feedback is reached under the less intensive emissions pathways. We
	suggest that permafrost carbon release could lead to significant warming, even under less intensive emissions
	trajectories.
	https://www.nature.com/articles/ngeo1573?WT.ec_id=NGEO-201210

7	Researchers at the National Snow and Ice Data Center estimate that by 2200, 60% of the Northern Hemisphere's
	permafrost will probably be melted, which could release around 190 billion tons of carbon into the atmosphere.
	This amount is about half of all the carbon released in the industrial age. The affect this will have on the rate of
	atmospheric warming could be irreversible. At the very least, these estimates mean fossil fuel emissions will have
	to be reduced more than currently suggested to account for the amount of carbon expected to discharge from
	melting permafrost.
	https://www.wunderground.com/resources/climate/melting_permafrost.asp
8	We found that about 55 trillion kg of carbon could be lost [from soils] by 2050. This value is equivalent to an extra
	17% on top of current expected emissions over that time. These losses are like having another huge carbon
	emitting country on the planet, accelerating the rate of climate change.
	https://medium.com/@Alex_Verbeek/another-reason-to-be-worried-about-climate-change-
	1bf1e21e78e#.bzhqdsrsz
	(Note: the estimate might include some emissions from permafrost and peat)
9	A 2008 <u>Nature Geoscience study</u> — "High sensitivity of peat decomposition to climate change through water-table
	feedback" — projected that "a warming of 4°C causes a 40% loss of soil organic carbon from the shallow peat and
	86% from the deep peat" of Northern peatlands. On our current emissions path, the world is set to warm well
	beyond 4°C (7°F). According to the 2008 study, "We conclude that peatlands will quickly respond to the expected
	warming in this century by losing labile soil organic carbon during dry periods."
	http://thinkprogress.org/climate/2015/01/13/3610618/peat-wetlands-global-warming/
10	globalcarbonproject.org/global/pdf/pep/Limpens.2008.Peatlands& Carbon.BiogeosciencesDiscus.pdf
11	Methane emissions from reservoirs contribute about .7GTC of CO2 equivalent per year, resulting in about 30 GTC
	through 2060 and 60 GTC through 2100.
	http://www.climatecentral.org/news/greenhouse-gases-reservoirs-fuel-climate-change-20745
12	"[G]lobally, lakes and manmade "impoundments" like reservoirs emit about one-fifth the amount of greenhouse
	gases emitted by the burning of fossil fuels" "[S]cientists have found that this surge in aquatic plant growth could
	double the methane being emitted from lakes [(to 40% of current fossil fuel emissions)] over the next 50 years."
	https://climatecrocks.com/2018/05/17/in-lakes-cat-tails-and-algal-blooms-could-be-a-toxic-methane-feedback/
13	Global warming is shifting many forests from carbon sinks to carbon sources, thus increasing natural emissions
	and reducing the CO2 uptake in the biosphere
	From What Lies Beneath (download PDF from <u>https://www.breakthroughonline.org.au/)</u> (Page 25)
14	The US Forest Service now expects the US forests to shift from their current status of net sequesters of CO2 to
	become a significant emissions source in all future scenarios
15	Other potential positive carbon cycle feedbacks that are even more uncertain, but could be quite sizeable in
	magnitude, are methane feedbacks, related to the possible release of frozen methane currently trapped in
	thawing Arctic permafrost, and so-called "clathrate"—a crystalline form of methane that is found in abundance
	along the continental shelves of the oceans, which could be destablized by modest ocean warming. Since
	methane is a very potent greenhouse gas, such releases of potentially large amounts of methane into the
	atmosphere could further amplify greenhouse warming and associated climate changes.
	atmosphere could further ampling greenhouse warming and associated climate changes.
	The key potential implication of a net positive carbon cycle feedback is that current projections of future warming
	may actually underestimate the degree of warming expected from a particular carbon emissions pathway. This
	is because the assumed relationship between carbon emissions and CO2 concentrations would underestimate the
1	actual resulting CO2concentrations because they assume a fixed airborne fraction of emitted CO2, when, in fact,

	that fraction would instead be increasing over time. While the magnitude of this effect is uncertain, the best estimates suggest an additional 20-30 ppm of CO2 per degree C warming, leading to an additional warming of anywhere from 0.1°C to 1.5°C relative to the <u>nominal temperature projections</u> shown in earlier lessons.
	https://www.e-education.psu.edu/meteo469/node/160
16	http://www.killerinourmidst.com/methane and MHs2.html
	Also, see http://ccdatacenter.org/documents/GlobalWarmingFeedbacks.pdf