Expected Global Temperature Increase For 2100

Bruce Parker (<u>bruceparker@alum.mit.edu</u>) September 23, 2016 http://ccdatacenter.org/documents/ExpectedTemperatureIncreaseFor2100.pdf

Summary

The recently signed COP 21 Paris Agreement calls for all nations to work towards keeping the global temperature rise this century to well below 2°C above pre-industrial levels and to strive to limit the temperature increase to 1.5°C. And what is assumed is that the temperature would stabilize after the target was met. Unfortunately the planning does not appear to have taken into account the additional warming from natural causes that are a direct result of a warming planet – decreased albedo (from the melting of summer-time ice in the Arctic Ocean, the reduced snow cover in the Northern Hemisphere, etc.) and increased greenhouse gas emissions (CO2 and methane from peat bogs, thawing permafrost, etc.)¹. Unless these natural changes (feedbacks) can either be reduced to zero or compensated for (by annually removing an equivalent amount or carbon dioxide from the atmosphere) the Earth's atmosphere will continue to warm long after anthropogenic greenhouse gas emissions are reduced to zero. Basically, our global warming goal has to be to keep the temperature low enough so that we can afford to offset the equivalent emissions from the global warming feedbacks, otherwise the Earth will eventually warm enough to cause catastrophic climate change.

Fortunately, one does not need a sophisticated climate model to get a ballpark estimate of the challenge, which, simply stated, is "can we afford to stabilize atmospheric CO2 at a level at which the equivalent emissions from global warming feedbacks will be minimal". Only a few parameters are needed, and the table below provides reasonable values for each:

1	1240	The net amount of CO2 emissions from an aggressive emissions reduction scenario (2010 emissions were about 34 GTCO2; if they increase annually by 2% until 2025 and then decline by 1.5 GTCO2, the there will be
		net zero emissions after 2055 and the total emissions will be about 1240 GTCO2)
2	180	Emissions after 2055 that will need to be sequestered if annual emissions are about 4 GTCO2 ²
3	1,000	The IPCC post-2011 CO2 budget for a 66% chance of limiting the temperature increase to 2°C ³
4	1,988	CO2 equivalent emissions from global warming feedbacks for a temperature increase of 2°C ⁴
5	3	The climate sensitivity to CO2 from a doubling of atmospheric CO2 ⁵
6	50	Per-ton cost of capturing and sequestering CO2 for CCS (anthropogenic emissions only) ⁶
7	100	Per-ton cost of capturing and sequestering CO2 for direct air capture (DAC) ⁶
8	2.6	Effective radiative forcing for 1.9°C and a climate sensitivity of 3 ⁷

Table 1 – Parameters for Ballpark Estimate of CO2 Sequestration Costs Based on Amount of CO2 Sequestered

Using the above parameters, the following estimates of the temperature increase for 2100 were made for various amounts of CO2 sequestered:

(Emissions in GTCO2)	Meet Anthropogenic Budget	Meet Anthropogenic	Remove enough
	(no sequestration of	Budget and sequestration	CO2 (1,600 GTCO2)
	equivalent CO2 from	of equivalent CO2 from	to eliminate
	feedbacks)	feedbacks	feedbacks
Total Emissions over budget	2408	2408	2408
CO2 Sequestered	420	2408	2408 + 1600
CO2e not sequestered	1988	0	0
Sequestration Costs (T\$)	21	200	400
2100 ERF from feedbacks/extra	1.32	0	-1.08 (=2.6-1.52)
CO2 removed			
Total ERF (W/m ²)	3.92 (=2.6+1.32)	2.6	1.52 (ERF for 1°C)
Equilibrium Temperature (°C)	3.27	1.9	1.0

Table 2 – Equilibrium Temperature Increase for Various Amount of CO2 Sequestration

If anthropogenic emissions are in line with the UNFCCC budget, we can expect a temperature increase well over 3°C for a modest cost. If we also remove CO2 from the atmosphere that is equivalent to the global warming feedbacks we can limit the temperature to 2°C for a cost of about \$200 Trillion, but the planet will continue to warm unless we spend another \$20 Trillion per year. Since global warming feedbacks are already significant⁸ with a temperature increase of only about 1.1°C, it would seem that we'd be lucky to eliminate the feedbacks with a temperature increase of only 1°C, which would cost over \$400 Trillion.

The prevailing assumption is that we will be willing (and able) to spend whatever it costs to keep meet the temperature target because anything more than that will likely be disastrous for our civilization. Giving up on that goal is then equivalent to condemning future generations to a planet that is inhospitable to civilization as we know it, and this may be the reason that very few people openly acknowledge our predicament. But a closer look expected costs (likely around \$300 Trillion this century if we can significantly reduce the expected cost of carbon dioxide removal to \$100/ton of CO2 for direct air capture) shows that we have a very daunting (and almost certainly insurmountable) problem.

Given that

- We can already expect about a 2°C temperature increase based on the greenhouse gases currently in the atmosphere (assuming emissions from burning coal are eliminated)^{9,10}
- There will be significant future anthropogenic greenhouse gas emissions for any realistic mitigation scenario
- Global warming feedbacks are already significant⁸
- There will be both significant future natural greenhouse gas emissions and significant albedo changes from the feedbacks from a warming world⁴
- Widespread thawing of the permafrost could start when the global temperature increases by 1.5°C¹¹
- If only a small fraction of Arctic carbon is released into the atmosphere the result could be catastrophic¹²
- The costs of removing CO2 from the atmosphere at the scale and speed required to limit the temperate increase in 2100 to 2°C are prohibitive⁷
- Most climate change damage will happen before the two-degree warming threshold¹³
- Once the temperature increase is over 3°C (and possibly over 1.5°C), the feedbacks from the global warming will likely drive the temperature increase to well over 4°C, resulting in a planet that is not hospitable to civilization as we know it
- Long-term sea level rise will exceed 40 feet¹⁴
- Ocean acidification will be catastrophic¹⁵

it is almost impossible to see how we can prevent very serious climate disruption. We should not give up hope on solving climate change as it is always possible that some technological "miracle" may be discovered. But the prudent thing to do is to assume that very serious climate disruption will occur well before 2100. We then have two main choices – we can either (1) use albedo modification to reduce the Earth's average temperature (in order to prevent the natural emissions and albedo changes from global warming feedbacks), or (2) start planning for catastrophic climate change. If we really want human civilization to survive for at least another thousand years then the sooner we can start having realistic conversations about our likely future the greater the chances of survival will be.

Footnotes

From an April 2015 article "It was first pro- it has not yet m projections in ti- are biased low." "It's certainly n couple of gigate But by 2100, th GTCO2], says Se http://www.washington nobodys-even-talking-a Emissions after 2055 It is very unlikely that te Technology Perspective 2050 – http://www.iea. storage-2013.html	oposed in hade its with he <u>last IP(</u> ot much cons per year chaefer. <u>npost.con</u> about-yet otal green es 2012 2°	2005. And ay into ma <u>CC report</u> a of a stretch ear from th " estimate <u>n/news/er</u> house gas C Scenario	the first e ajor climate account fo n of the im nawing per for total e nergy-envir s emissions	e projectio r permafro agination t rmafrost," : emissions fi ronment/w s can ever g estimates t	ns, [Dr. Ke st," says S to think the says [Dr. R rom perma vp/2015/0 get to zero he over 7	vin] Schaef chaefer. "S at over the obert Max afrost right <u>4/01/the-a</u> . For exam GTCO2 wil	fer says. " So all of th coming d Holmes. now is 12 arctic-clime nple, see t I need to I	None of the index None of the	he climate estimate, or e could lose s [440 <u>-that-</u> hergy annually in	
it has not yet m projections in t are biased low. "It's certainly n couple of gigate But by 2100, th GTCO2], says So <u>http://www.washington</u> nobodys-even-talking-a Emissions after 2055 It is very unlikely that to Technology Perspective 2050 – <u>http://www.iea</u>	hade its w he <u>last IPC</u> ot much c ons per ye ne "mean' chaefer. <u>npost.con</u> about-yet	ay into ma <u>CC report</u> a of a stretch ear from th " estimate <u>n/news/er</u> house gas C Scenario	ajor climate account fo n of the im nawing per for total e <u>nergy-envi</u> s emissions	e projectio r permafro agination t rmafrost," : emissions fi ronment/w s can ever g estimates t	ns, [Dr. Ke st," says S to think the says [Dr. R rom perma vp/2015/0 get to zero he over 7	vin] Schaef chaefer. "S at over the obert Max afrost right <u>4/01/the-a</u> . For exam GTCO2 wil	fer says. " So all of th coming d Holmes. now is 12 arctic-clime nple, see t I need to I	None of the index None of the	he climate estimate, or e could lose s [440 <u>-that-</u> hergy annually in	
couple of gigato But by 2100, th GTCO2], says So http://www.washington nobodys-even-talking-a Emissions after 2055 It is very unlikely that to Technology Perspective 2050 – http://www.iea	ons per ye ne "mean' chaefer. npost.con about-yet otal green es 2012 2°	ear from th " estimate <u>n/news/er</u> house gas 'C Scenario	nawing per for total e nergy-envi s emissions	rmafrost," : emissions fi ronment/w s can ever g estimates t	says [Dr. R rom perma vp/2015/0 get to zero he over 7	obert Max afrost right <u>4/01/the-a</u> . For exam GTCO2 wil	Holmes. now is 12 arctic-clim nple, see t I need to I	20 gigatons ate-threat he IEA "En be stored a	s [440 <u>-that-</u> lergy annually in	
GTCO2], says So http://www.washington nobodys-even-talking-a Emissions after 2055 It is very unlikely that to Technology Perspective 2050 – http://www.iea	chaefer. npost.con about-yet otal green es 2012 2°	n/news/er	emissions	ronment/w s can ever g estimates t	yp/2015/0 get to zero he over 7	4/01/the-a . For exam GTCO2 wil	arctic-clim nple, see t I need to I	ate-threat he IEA "En	<u>-that-</u> lergy annually in	
nobodys-even-talking-a Emissions after 2055 It is very unlikely that to Technology Perspective 2050 – <u>http://www.iea</u>	otal green es 2012 2°	nhouse gas 'C Scenario	s emissions o" , which o	s can ever _é estimates t	get to zero he over 7	. For exam GTCO2 wil	nple, see t I need to l	he IEA "En be stored a	ergy annually in	
It is very unlikely that to Technology Perspective 2050 – <u>http://www.iea</u>	es 2012 2°	°C Scenario	o" , which (estimates t	he over 7	GTCO2 wil	I need to I	be stored a	annually in	
Table 2.2 Cumulative carbon di	ioxide (CO ₂) em	nission consister		_			t different level	s of probability,	based on different	
			mulative CO ₂	emissions fro		tCO ₂				
		1	220/			220/	CC0/		220/	
meeting goal ^b									33%	
	2250	2250	2550	2900	3000	3300	4200	4500	4850	
Simple model, WGIII	No data	2300 to	2400 to	2550 to 3150	2900 to	2950 to	n.a.ª	4150 to	5250 to 6000	
scenarios d								5750		
Complex models, RCP	400	550	850	1000	1300	1500	2400	2800	3250	
Simple model, WGIII scenarios ^d	No data	550 to 600	600 to 1150	750 to 1400	1150 to 1400	1150 to 2050	n.a.ª	2350 to 4000	3500 to 4250	
Total fossil carbon available in	2011f:3670	to 7100 GtC0 ₂ ((reserves) and 31	1300 to 50050 Gt	CO ₂ (resources)					
https://www.ipcc.ch/po	df/assessr	ment-repo	ort/ar5/syr,	/AR5_SYR_	FINAL_All	Topics.pd	<u>f</u> , page 61	, Table 2.2		
most likely because (1) analyses of the feedbac individually. By doing s	modeling cks look or come simp	their expo nly at wha ple analyse	ected mag t has happ es of four o	nitudes thr ened so fa of the prima	rough the o r; and (3) t ary feedba	end of the he feedba cks (albede	century is cks are us o changes	very diffic ually looke from melt	cult; (2) mos ed at ting Arctic se	
	Table 2.2 Cumulative carbon di lines of evidence. [WGI 12.5.4, WGI 12	Table 2.2 Cumulative carbon dioxide (CO2) en lines of evidence. [WGI 12.5.4, WGIII 6] Net anthropogenic warming • Fraction of simulations 66% meeting goal • Complex models, RCP Simple model, WGIII No data scenarios only ° Simple model, WGIII No data scenarios only ° Simple model, WGIII No data scenarios only ° Simple model, WGIII Simple model, WGIII No data scenarios only ° Simple model, WGIII No data scenarios d Total fossil carbon available in 2011†:3670 https://www.ipcc.ch/pdf/assessi Feedbacks The significance of the magnitud most likely because (1) modeling analyses of the feedbacks look o individually. By doing some simplice and Northern Hemisphere sn	lines of evidence. [WGI 12.5.4, WGIII 6] Cu Net anthropogenic warming • Fraction of simulations 66% 50% meeting goal • Complex models, RCP Simple model, WGIII No data 2350 Cuplex models, RCP Simple model, WGIII No data 2350 Cuplex models, RCP scenarios d 2350 Cuplex model, WGIII No data Simple model, WGIII No data 550 to 600 scenarios d Total fossil carbon available in 2011 f: 3670 to 7100 GtC0.1 https://www.ipcc.ch/pdf/assessment-report Feedbacks The significance of the magnitudes of the post likely because (1) modeling their exponent analyses of the feedbacks look only at what individually. By doing some simple analyse ice and Northern Hemisphere snow cover; <	Table 2.2 Cumulative carbon dioxide (CO2) emission consistent with limiting values of evidence. [WGI 12.5.4, WGIII 6] Cumulative CO2 Net anthropogenic warming •	Table 2.2 [Cumulative carbon dioxide (CO ₂) emission consistent with limiting warming to less tellines of evidence. [WGI 12.5.4, WGIII 6] Cumulative CO ₂ emissions from the evidence. [WGI 12.5.4, WGIII 6] Cumulative CO ₂ emissions from the evidence. [WGI 12.5.4, WGIII 6] Cumulative CO ₂ emissions from the evidence. [WGI 12.5.4, WGIII 6] Cumulative CO ₂ emissions from the evidence of simulations 66% 50% 33% 66% Cumulative CO ₂ emissions from the evidence of the eviden	Table 2.2 [Cumulative carbon dioxide (CO2) emission consistent with limiting warming to less than stated tem lines of evidence. (WGI 12.5.4, WGIII 6) Cumulative CO2 emissions from 1870 in GI Net anthropogenic warming * Cumulative CO2 emissions from 1870 in GI Net anthropogenic warming * Cumulative CO2 emissions from 1870 in GI Net anthropogenic warming * Cumulative CO2 emissions from 1870 in GI Net anthropogenic warming * Cumulative CO2 emissions from 2011 in GI Cumulative CO2 emissions from 2011 in GI Cumulative CO2 emissions from 2011 in GI Simple model WGIII No data 2300 to 2400 to 2550 to 3150 2900 to Scenarios of WGIII No data 2300 to 2400 to 2550 to 3150 2900 to Scenarios of WGIII No data 2300 to 2300 to 2300 to 250 3200 Scenarios of NG Cumulative CO2 emissions from 2011 in GI Cumplex models RCP 400 <th col<="" td=""><td>Table 2.2 Cumulative carbon dioxide (CO₂) emission consistent with limiting warming to less than stated temperature limits a lines of evidence. (WGI 12.5.4, WGIII 6) Cumulative CO₂ emissions from 18 70 in GtCO₂ Net anthropogenic warming a <1.5°C</td></th> <2°C Fraction of simulations 66% 50% 33% 66% 50% 33% Complex models RCP 2250 2250 250 2900 3000 3300 Simple model WGIII No data 2300 to 2400 to 2550 to 3150 2900 to 2950 to 3200 Cumulative CO ₂ emissions from 2011 in GtCO ₂ Camplex models RCP 2250 250 850 1000 1300 1500 Simple model WGIII No data 550 to 600 600 to 1150 750 to 1400 1150 to 1150 to Simple model WGIII No data 550 to 600 600 to 1150 750 to 1400 1150 to 1150 to Simple model WGIII No data 550 to 600 600 to 1150 750 to 1400 1150 to 1250 to Simple model WGIII No data 550 to 600 600 to 1150 750 to 1400 1150 to	<td>Table 2.2 Cumulative carbon dioxide (CO₂) emission consistent with limiting warming to less than stated temperature limits a lines of evidence. (WGI 12.5.4, WGIII 6) Cumulative CO₂ emissions from 18 70 in GtCO₂ Net anthropogenic warming a <1.5°C</td>	Table 2.2 Cumulative carbon dioxide (CO ₂) emission consistent with limiting warming to less than stated temperature limits a lines of evidence. (WGI 12.5.4, WGIII 6) Cumulative CO ₂ emissions from 18 70 in GtCO ₂ Net anthropogenic warming a <1.5°C	Table 2.2 [Cumulative carbon dioxide (CO ₂) emission consistent with limiting warming to less than stated temperature limits at different level lines of evidence. <i>(WGI 12.5.4, WGII 6</i>] Cumulative CO ₂ emissions from 1870 in GCO ₂ Net anthropogenic warming * <1.5°C <2°C Fraction of simulations 66% 50% 33% 66% 50% 33% 66% Complex models, RCP 2250 2250 2550 2900 3000 3300 4200 Simple model, WGIII No data 2300 to 2400 to 2550 to 3150 2900 to 2950 to n.a.* Simple model, WGIII No data 2300 to 2400 to 2550 to 11 in GtCO ₂ Cumulative CO ₂ emissions from 2011 in GtCO ₂ Cumulative CO ₂ emissions from 2011 in GtCO ₂ Cumulative CO ₂ emissions from 2011 in GtCO ₂ Cumulative CO ₂ emissions from 2011 in GtCO ₂ Cumulative CO ₂ emissions from 2011 in GtCO ₂ Simple model, WGII No data 550 to 600 600 to 1150 750 to 1400 1150 to n.a.* Simple model WGIII No data 550 to 600 600 to 1150	Table 2.2 [Cumulative carbon dioxide (CO ₂) emission consistent with limiting warming to less than stated temperature limits at different levels of probability, lines of evidence, [WGI 12.5.4, WGIII 6] Cumulative CO ₂ emissions from 1870 in GtCO ₂ Net anthropogenic warming • <1.5°C <2°C <3°C Fraction of simulations 66% 50% 33% 66% 50% 33% 66% 50% Met anthropogenic warming • <1.5°C <2°C <3°C Fraction of simulations 66% 50% 33% 66% 50% 33% 66% 50% Simple models RCP 2250 2250 2550 2900 3000 3300 4200 4500 Simple models WGIII No data 2300 to 2400 to 2550 to 3150 2900 to 2950 to n.a.* 4150 to Cumulative CO2 emissions from 2011 in GtCO2 Cumulative CO2 emissions from 2011 in GtCO2 Complex models WGIII No data 550 to 600 600 to 1150 750 to 1400 1150 to n.a.* 2350 to 600 Simple model WGIII No data 550 to 600

1.	The warming potential in 2100 from the four feedbacks are roughly equivalent to about ½ of current fossil
	fuel emissions

- 2. By 2100 this will result in a warming potential (110 PPM CO2e), about equivalent to that of all fossil fuel emissions since pre-industrial times, and capable of adding about 0.9° C to the Earth's average temperature.
- 3. The "CO2 emissions equivalent" of these feedbacks through 2100 is about twice the UNFCCC's carbon budget.

The results of the simple analysis are shown in the table below. The analysis for the albedo changes are based on data from the National Snow and Ice Data Center (Arctic sea Ice extent) and from the "Snow Lab" at Rutgers University (Northern Hemisphere snow cover extent). The estimate for the permafrost is based on the "mean" estimate for total emissions from permafrost (120 GTC) reported by Kevin Schaefer of the National Snow and Ice Data Center. The estimate for peatlands and peat bogs assumes that the emissions will remain at the current rate (4 GTCO2/year) through 2100.

Feedback	Likely Change Through 2100						
Albedo Changes	Rad. Forcing (W/m ²)	Atmos. CO2e Change (PPM)	Total Equiv. Emissions	Temp Increase			
Arctic Ocean	.34	26.1	452	0.20			
Retreating snowline	.31	24.0	418	0.18			
GHG Emissions							
Permafrost	.33	25.5	440	0.19			
Peatlands and Peat Bogs	.30	23.0	400	0.17			
Total	1.28	98.6	1710	0.86 [#]			
# Temperature increases a	re not "additive", so the	total temperature increase is ba	ased on the total radiativ	e forcing			
Climate sensitivity							
http://www.realclimate.org/index.php/archives/2007/08/the-co2-problem-in-6-easy-steps/ http://www.skepticalscience.com/climate-sensitivity-advanced.htm http://www.bitsofscience.org/real-global-temperature-trend-climate-sensitivity-leading-climate-experts-7106							
Carbon Dioxide Removal (CDR) Costs							
The future costs of CDR are very difficult to predict. In the recently published book "Climate Intervention – Carbon Dioxide Removal and Reliable Sequestration" the National Resource Council (NRC) estimated costs for "bio-energy with carbon capture and storage" (BECCS) at about \$100/ton CO2 and for "direct air capture" (DAC) at \$400-\$1000/ton CO2 (Table 2.2 in the report). Other CDR methods are available but may also be of little use given the magnitude of the problem. Due to the likely limited availability land for of BECCS and because of the really large quantities of CO2 that must be removed, DAC removal will likely need to be used most widely.							
Assuming some progress in the coming years, a reasonable CCS cost between now and 2055 might be \$50/ton CO2 (which can be used for future fossil fuel emissions).							
alternatives, BECCS and D DAC is the only method th	AC are the only viable nat captures CO2 in the	removed (over 2000 GTCO2 alternatives for CDR. And gi e needed quantities. Assumi is century might be \$100/to	ven the limitations of language of the second se	and for BECCS,			

(What would be really important to determine is the energy requirement to compress the captured CO2 and compress it. It should then be possible to estimate the number of "power plant equivalents" to compress and sequester annually 1 PPM of the atmospheric CO2.)

TABLE 2.2 Summary of the potential impacts of various CDR strategies. Amounts of CO_2 included in table are estimates of the theoretical or potentially feasible amounts, with the exception of those noted as the amounts required to keep global warming to less than 2°C (2DS). These estimates are provided mostly to only one significant figure to indicate possible scales of deployment and costs as estimated in published literature Real world values could differ substantially from these estimates.

Land Management 2.5* 100 ^h 1-100 ^o Irreversible fund changes from deforestation/gast land uses Reforestation 2.5* 100 ^h 1-100 ^o Combined Combined Accelerated Weathering: Competition for land for agricultural production Competition for land for agricultural production Cequestration Land 2 -100 20-1.00 ^o Competition for land for agricultural production Cequestration Land 2 -100 50-100 ^{of} Land Land-exailable cheap alkalinity and aggream markets for product Ocean Interventilation 1-4 ^d 90-300 500 ^h Environmental consequences and potential co-benefits Ocean fron Fertilization 1-4 ^d 90-300 500 ^h Environmental consequences and potential co-benefits Capture 15-18 ^s 100-1,000 ^f -100 ^h Sequestration of 18 GitCO-yr requires - 1,000 million acres of arable land (1,330 million acres of arable land (1,300 mill		CDR Method	Rate of Capture or Sequestration [GtCO ₂ /yr]	Cumulative CDR to 2100 [GtCO ₂]	Cost [\$/tCO ₂]	Limitations
Capture and Sequestration Land 2 -100 (U.S. only) 20-1,000* aggregate markets for product Ocean—available cheap alkalinity Ocean Iron Fertilization 1.4# 90-300 500* • Environmental consequences and potential co-benefits • Uncertainty in net carbon sequestration Bioenergy with Capture 15-18* ("Theoretical" 100-1,000* (U.S. only) ~100* • • Sequestration of 18 GCO ₂ /r requires ~ 1,000 millio acres of arable land (1,530 mill. acres aralable for bioenergy production will likely be significantly less because much of arable land area is required for food production) Direct Air Capture 10* • -1.000 (U.S. only) • • • • Sequestration of 18 GCO ₂ /r requires ~ 1.000 millio acres of alable and varilable for bioenergy production will likely be significantly less because much of arable land area is required for food production) Sequestration Geologic 1-20* (2DS) 800* (2DS) 10-20* • Permeability of formation, number of wells, and overall size of the sequestration reservoir Sequestration Geologic 1-20* (2DS) 800* (2DS) 10-20* • Permeability of formation, number of wells, and overall size of the sequestration reservoir Sequestration Geologic 1-20* (2DS) 800* (2DS) 10-20* •		Afforestation/				deforestation/past land usesDecreased biodiversityCompetition for land for agricultural
Ocean Iron Fertilization I.4 ^g 90-300 500 ^h Environmental consequences and potential co-benefits Bioenergy with Capture Bioenergy with Capture Sequestration of 18 GiCO_yr requires ~ 1,000 million acres of arable Iand (1,530 mill. acres available worldwide ¹ , extual amount of arable Iand available for bioenergy production will likely be significantly less because much of arable Iand area is required for food production Direct Air Capture 10 ^m ~1,000 ~100 ^e Land available of rolution acres of BLM Iand in Southwest United States ⁿ Sequestration Geologic 1-20 ^p (2DS) 800 ^p (2DS) 10-20 ^d erresort is required for God production Sequestration Geologic 1-20 ^p (2DS) 800 ^p (2DS) 10-20 ^d erresort is resort in the sequestration reservoir Ocean (CO ₂ neutralized Y * Y* Y* 10-100 ^d Availability of formation, number of with ocean acidification *Sinth and Torn, 2013 and Lenton, 2013, *Nitisson and Schopfhauser, 1995 and Lentor, 2013; *Nitisson and Schopfhauser, 1995 and Lentor, 2013; *Aunont and Bopp, 2006, *Harrison, 2013, *Aunont and Bopp, 2006, *Harrison, 2013, *Aunont and Bopp, 2006, *Harrison, 2013; *Nitisson and Schopfhauser, 2012, and Wanghan, 2009, and Kiregler et al., 2013, *Aunont and Bopp, 2006, *Harrison, 2013; *Kirad's and Stores protwite davaghan, 2009, and Kiregler et al., 2013; *Aunont and Bopp, 2006, *Harrison, 2013; *Kirad's and Store, 2004, *Harrison, 2013; *Assuming similar c	Capture and	Land	(U.S. only)	(U.S. only)		aggregate markets for product
Capture 15-18 ⁱ 100-1,000 ⁱ ~100 ^k Capture 15-18 ⁱ 100-1,000 ⁱ ~100 ^k mill. acres available worldwide ⁱ , actual amount of arable land available for bioenergy production will likely be significantly less because much of arable land area is required for food production) Direct Air Capture 10 ^m ~1,000 400-1,000 ⁿ • Land available for solar ~ 100,000,000 Sequestration Geologic 1-20 ^p (2DS) 800 ^p (2DS) 10-20 ^d • Permeability of formation, number of wells, and overall size of the sequestration reservoir Ocean (molecular CO ₂) ? 2,000 to 10,000 ^d 10-20 ^d • Environmental consequences associated with ocean acidification *Smith and Torn, 2013 and Lenton, 2013; *Nilsson and Schopfhauser, 1995 and Lenton; 2013; *Richards and Stokes, 2004; Stavins and Stohoard, 2012; Neu et al., 2013; *Richards and Stokes, 2004; Stavins and Stohoard aptive at a conventional coal-fired power plant (Rubin and Zhai, 2012); .'A lexandratos and Bruinsma, 2012; "I fueled from solar, aptive day and or +11 acres per VMW electricity used for powering DAC, and based upon the range of energy requirement of -11 acres per VMW electricity used for powering DAC, and based upon the range of energy requirement estimates in the tirtrature, -31,010 acres required to remove emission asociated with nospheres ranging from 350 ppm to 1,000 ppm to 1,000 ppm to 1,000 ppm to 1,000 to Coc Quby, Note: the single and anotin to associated with ocean et al., 2013; *Nasuming increasing rate of sequestration reservoir			1-4 ^g	90-300	500 ^h	potential co-benefits
(U.S. only) (U.S. only) 400-1,000 ^a acres of BLM land in Southwest United States ^a Sequestration Geologic 1-20 ^p (2DS) 800 ^p (2DS) 10-20 ^a Permeability of formation, number of wells, and overall size of the sequestration reservoir Ocean (molecular CO ₂) ? 2,000 to 10,000 ^c 10-20 ^c Environmental consequences associated with ocean acidification Ocean (CO ₂ neutralized with added alkalinity) ? * ? * 10-100 ^c Availability of alkaline minerals *Smith and Torn, 2013 and Lenton, 2013; *Nilsson and Schopfhauser, 1995 and Lenton; 2013; *Richards and Stokes, 2004; Stavins and Stohes, 2005; and IPCC, 2014b; 4 Kirchofer et al., 2012; Rau et al., 2013; *asuming -4.65 GJ/tCO ₂ for the case of mineral captured per year, assuming wind as energy resource; ¹ IPCC, 2014a; McLaren, 2012; Rau et al., 2013; *asuming -4.65 GJ/tCO ₂ for the case of mineral strabonation via olivine at 155C and electric energy source from coal (Kirchofer et al., 2013; *asuming -4.65 GJ/tCO ₂ for the case of mineral sarbon capture at a conventional coal-fired power plant (Rubin and Zhai, 2012); 10-200, ocean/land requirement of <7 x 10 ³ km ² /GiCO ₂ sarbon capture at a conventional coal-fired power plant (Rubin and Zhai, 2012); Alax and raize and Bruinsma, 2012; ^{**} fit fueled from solar, sasuming in estimate of -11 acres per MW electricity used for powering DAC, and based upon the range of energy requirement estimates in the literature, ~31,000 acres required to remove emissions associated with one 500-MW power plant (i.e., 11,000 ons CO ₂ /dyi), Note: the single DAC plant to offset emissions of the 500-MW power plant (i.e., 11,000 ons	Capture	Bioenergy with Capture		100-1,000 ⁱ	~100 ^k	1,000 million acres of arable land (1,530 mill. acres available worldwide ¹ , actual amount of arable land available for bioenergy production will likely be significantly less because much of arable
Sequestration Geologic 1-20 ^o (2DS) 800 ^o (2DS) 10-20 ^q wells, and overall size of the sequestration reservoir Ocean (molecular CO2) ? 2,000 to 10,000 ^r 10-20 ^r Environmental consequences associated with ocean acidification Ocean (CO2 neutralized with added alkalinity) ?* ?* 10-100 ^r • Availability of alkaline minerals *Smith and Torn, 2013 and Lenton, 2013; *Nilsson and Schopfhauser, 1995 and Lenton; 2013; *Richards and Stokes, 2004; Stavins and techards, 2005; and IPCC, 2014b; *Kirchofer et al., 2012; McLaren, 2012;Rau et al., 2013; *assuming -4.65 GJ/tCO2 for the case of mineral arbonation via olivine at 155C and electric energy source from coal (Kirchofer et al., 2013; ocean/land requirement of < 7 x 10 ⁵ km ² /GtCO2 aptured per year, assuming wind as energy resource; *IPCC, 2014a; McLaren, 2012; Rau et al., 2013; *Assuming similar costs to arbon capture at a conventional coal-fired power plant (Rubin and Zhai, 2012); ¹ Alexandratos and Bruinsma, 2012; *i fueled from solar, ssuming an estimate of -11 acres per MW electricity used for powering DAC, and based upon the range of energy requirement estimates in the tierature, ~31,000 acres required to remove emissions associated with one 500-MW power plant (i.e., 11,000 tons CO2/day), Note: the single DAC plant to offset emissions of the 500-MW power plant is only 33 acres; *Mazzuti et al., 2013; House et al., 2011; *Bureau of Land Aaagement, 2012; * Assuming increasing rate of sequestration: 1 GtCO2/yr in 2257, *I 5 GtCO2/yr in 2250, *I 5 GtCO2/yr in 2100, which is ased upon required projections to limit total global warming to 2°C (IEA, 2013b) and gives a total amount sequestered of 800 GtCO2; *NETL, 013; ITFCCS, 2010; *Maximu ca		Direct Air Capture		,	400-1,000 ⁿ	acres of BLM land in Southwest United
Ocean (Indicedual CO2) ?* 2,000 to 10,000 10-20 with ocean acidification Ocean (CO2 neutralized with added alkalinity) ?* ?* 10-100 ^r • Availability of alkaline minerals *Smith and Torn, 2013 and Lenton, 2013; *Nilsson and Schopfhauser, 1995 and Lenton; 2013; *Richards and Stokes, 2004; Stavins and Richards, 2005; and IPCC, 2014b; *Kirchofer et al., 2012; McLaren, 2012;Rau et al., 2013; *assuming ~4.65 GJ/tCO2 for the case of mineral arbonation via olivine at 155C and electric energy source from coal (Kirchofer et al., 2013; *asuming ~4.65 GJ/tCO2 for the case of mineral arbonation via olivine at 155C and electric energy source; *IPCC, 2014a; McLaren, 2012; Rau et al., 2013; *Aumont and Bopp, 2006; *Harrison, 2013; *Kriegler et al., 2013 and Azar et al., 2010; *Lenton, 2010, Lenton and Vaughan, 2009, and Kriegler et al., 2013; *Assuming similar costs to arbon capture at a conventional coal-fired power plant (Rubin and Zhai, 2012); 'A lexandratos and Bruinsma, 2012; "if fueled from solar, sussuming an estimate of ~11 acres per MW electricity used for powering DAC, and based upon the range of energy requirement estimates in the iterature, ~31,000 acres required to remove emissions associated with one 500-MW power plant (i.e., 11,000 tons CO ₂ /day), Note: the single DAC plant to offset emissions of the 500-MW power plant is only 33 acres; "Mazzotti et al., 2013; House et al., 2011; *Bureau of Land Vangement, 2012; * Assuming increasing rate of sequestration: 1 GtCO ₂ /yr in 2025, 7.5 GtCO ₂ /yr in 2050, and 19 GtCO ₂ /yr in 2100, which is assed upon required projections to limit total global warming to 2°C (IEA, 2013b) and gives a total amount sequestered of 800 GtCO ₂ ; *NETL, 2013; Flower and not any fundamental physical barriers. <	Sequestration	Geologic	1-20 ^p (2DS)	800 ^p (2DS)	10-20 ^q	wells, and overall size of the sequestration
with added alkalinity) ¹ / ₁ ¹		Ocean (molecular CO ₂)	?	2,000 to 10,000 ^r	10-20 ^r	
Richards, 2005; and IPCC, 2014b; ^d Kirchofer et al., 2012; McLaren, 2012;Rau et al., 2013; ^e assuming ~4.65 GJ/tCO ₂ for the case of mineral arbonation via olivine at 155C and electric energy source from coal (Kirchofer et al., 2012); ocean/land requirement of <7 x 10 ⁵ km ² /GtCO ₂ aptured per year, assuming wind as energy resource; ^f IPCC, 2014a; McLaren, 2012; Rau et al., 2013; ^{hg} Aumont and Bopp, 2006; ^h Harrison, 2013; ⁱ Kriegler et al., 2013 and Azar et al., 2010; ^{jk} Lenton, 2010, Lenton and Vaughan, 2009, and Kriegler et al., 2013; ^k Assuming similar costs to arbon capture at a conventional coal-fired power plant (Rubin and Zhai, 2012); ¹ Alexandratos and Bruinsma, 2012; ^m if fueled from solar, assuming an estimate of ~11 acres per MW electricity used for powering DAC, and based upon the range of energy requirement estimates in the iterature, ~31,000 acres required to remove emissions associated with one 500-MW power plant (i.e., 11,000 tons CO ₂ /day), Note: the single DAC plant to offset emissions of the 500-MW power plant is only 33 acres; ⁿ Mazzotti et al., 2013; House et al., 2011; ^o Bureau of Land Mangement, 2012; ^p Assuming increasing rate of sequestration: 1 GtCO ₂ /yr in 2025, 7.5 GtCO ₂ /yr in 2100, which is based upon required projections to limit total global warming to 2°C (IEA, 2013b) and gives a total amount sequestered of 800 GtCO ₂ ; ⁴ NETL, 2013; ITFCCS, 2010; ^f Maximum capacity in equilibrium with atmospheres ranging from 350 ppm to 1,000 ppm (IPCC, 2005); ^s No specific upper bounds appear in the literature, but maximum rates of deployment this century are likely to limited by economic and/or local environmental concerns and not any fundamental physical barriers.			? ^s	? ^s	10-100 ^r	Availability of alkaline minerals
	Richards, 2005; a arbonation via c aptured per year 2013; ⁱ Kriegler e arbon capture at issuming an estin iterature, ~31,00 DAC plant to off Mangement, 201 based upon requi 2013; ITFCCS, 2 bounds appear in concerns and not	and IPCC, 2014b; ^d Kirchofer slivine at 155C and electric entr, assuming wind as energy retricted t al., 2013 and Azar et al., 2013 t a conventional coal-fired power mate of ~11 acres per MW elevelone to acres required to remove entry teres entry assuming increasing rate red projections to limit total groups (010; ^f Maximum capacity in entry the literature, but maximum in any fundamental physical bar	et al., 2012; McI ergy source from source; ^f IPCC, 2 0; ^k Lenton, 201 wer plant (Rubin cetricity used for nissions associat power plant is o of sequestration (lobal warming te equilibrium with rates of deploym rriers.	Laren, 2012;Rau et in coal (Kirchofer et 014a; McLaren, 20 0, Lenton and Vaug and Zhai, 2012); ^{1,1} powering DAC, an ed with one 500-M ¹ nly 33 acres; ⁿ Mazz : 1 GtCO ₂ /yr in 202 to 2°C (IEA, 2013b atmospheres rangin ent this century are	al., 2013; ^e assi al., 2012); occ 12; Rau et al., han, 2009, an- Alexandratos a d based upon t W power plant sotti et al., 201 5, 7.5 GtCO ₂ /9 and gives a to g from 350 pp likely to limit	uming ~4.65 GJ/tCO ₂ for the case of mineral ean/land requirement of $< 7 \times 10^5$ km ² /GtCO ₂ 2013; ^{hg} Aumont and Bopp, 2006; ^h Harrison, d Kriegler et al., 2013; ^k Assuming similar costs to und Bruinsma, 2012; ^m if fueled from solar, the range of energy requirement estimates in the (i.e., 11,000 tons CO ₂ /day), Note: the single 3; House et al., 2011; ^o Bureau of Land yr in 2050, and 19 GtCO ₂ /yr in 2100, which is otal amount sequestered of 800 GtCO ₂ ; ⁴ NETL, om to 1,000 ppm (IPCC, 2005); ^s No specific upper ed by economic and/or local environmental
ective radiative forcing	<u>p://www.n</u>	ap.edu/catalog/1880	<u>s/climate-ll</u>	<u>itervention-Ca</u>	<u>(010-110) או טטוו</u>	<u>xiue-removal-and-reliable-sequestrati</u>
	ective radia	ative forcing				

calculations of the expected temperature increase for changes in both the Earth's albedo and annual emissions of CO2 require a value for climate sensitivity. The following representative values were obtained from http://ccdatacenter.org/documents/AlbedoCO2TempCalcs.pdf, which used a climate sensitivity of 3.0:

7

	https://twitter.com/ClimateOfGavin/status/765237770839269378 8/15/16
	http://www.nature.com/nclimate/journal/v6/n7/full/nclimate3043.html
10	Temperature increase from eliminating emissions from burning coal
	"While greenhouse warming [from CO2] would abate, the cessation of coal burning (if we were truly to go cold-
	turkey on all fossil fuel burning) would mean a disappearance of the reflective sulphate pollutants (" <u>aerosols</u> ")
	produced from the dirty burning of coal. These pollutants have a regional cooling effect that has offset a substantial
	fraction of greenhouse warming, particularly in the Northern Hemisphere. That cooling <u>would soon disappear</u> , adding about 0.5°C to the net warming."
	http://www.huffingtonpost.com/michael-e-mann/how-close-are-we-to-dangerous-planetary-
	warming b 8841534.html
	See also: <u>http://ccdatacenter.org/documents/BurningCoalCoolsPlanet.pdf</u>
11	Widespread thawing of the permafrost
	"The new research suggests that based on what's happened in the Earth's past, global temperatures 1.5 degrees
	Celsius above pre-industrial levels could cause vast areas of carbon-rich permafrost to thaw."
	https://www.corbonbrief.org/new.research.projects.wideenread.nermofreet.thew.with 1.5. degrees.of.worming
	https://www.carbonbrief.org/new-research-projects-widespread-permafrost-thaw-with-1-5-degrees-of-warming
	"It's certainly not much of a stretch of the imagination to think that over the coming decades, we could lose a couple
	of gigatons [of carbon] per year from thawing permafrost," says Holmes.
	https://www.washingtonpost.com/news/energy-environment/wp/2015/04/01/the-arctic-climate-threat-that- nobodys-even-talking-about-yet/
	<u>Hobodys-even-taiking-about-yet/</u>
12	If only a small fraction of Arctic carbon is released into the atmosphere the result could be catastrophic
	"Even if a small fraction of the Arctic carbon were released to the atmosphere, we're fucked," Dr Jason Box
	http://motherboard.vice.com/read/if-we-release-a-small-fraction-of-arctic-carbon-were-fucked-climatologist
1	

13	Climate Impacts vs. Temperature Increase								
12									
	In the chart below, Caldeira and his colleagues graphed the extent of damage from climate change on various sectors of the environment. They found that the sensitivity of some of these categories to small increases in temperature will be highest within the first several degrees of warming, and then tapers off, having hit a physical limit, or what the researchers call a "saturation of impacts," as in the case of coral								
	reefs at two degrees Celsius. Once the planet gets into the higher degrees of warming, the rate of impact								
	begins to plateau—because there won't be anything left to be affected.								
	1.0 Coral reefs								
	Terrestrial vegetation								
	R on Increased river flood								
	0.8 Staple crop land								
	UNESCO world heritage sites								
	Population SLR								
	0.8 0.6 0.4 0.4								
	5 0.4								
	G 0.4								
	τ έ								
	E 0.2								
	hard states								
	0.0								
	0 1 2 3 4 5 6								
	Global Temperature Change (°C)								
	Some climate change impacts rise fast with little warming, and then taper off, write a team of researchers in a paper published during the 2015 Paris climate talks.								
	http://www.newsweek.com/earth-resources-ruined-two-degrees-warming-threshold-404406								
14	Sea Level Rise								
	Looking the geologic record, sea level rise has typically been about 10–20 m/°C. Given that we are currently								
	committed to at least a 2°C temperature increase, the long-term sea level rise will likely be at least 20 meters (over								
	60 feet)								
	http://ccdatacenter.org/documents/Sea%20Level%20Rise.pdf								
45									
15	Ocean Acidification								
	"We are now carrying out an extraordinary chemical experiment on a global scale. Our fossil-fuel emissions raise the								
	dissolved CO_2 levels in the ocean, which reduces carbonate ion concentrations and lowers pH. The ocean's sunlit								
	surface layer (the top 100 yards or so) could easily lose 50 percent of its carbonate ion by the end of this century								
	unless we reduce emissions dramatically. Marine animals will find it harder to build skeletons, construct reefs, or								
	simply to grow and breathe. Compared with past geologic events, the speed and scale of this conversion is								
	astonishing."								
	http://www.scientificamerican.com/article/rising-acidity-in-the-ocean/								