Abstract

The reduced snow cover extent in the Northern Hemisphere is decreasing the springtime albedo of the Arctic region. A "back-of-the-envelop" calculation was done to estimate the magnitude of the both the current albedo change (about -0.0014) and the expected change by the year 2100 (about -0.003). Assuming a 70% cloud cover and a climate sensitivity of 3.1, the current albedo change will eventually add about 0.10° C to the Earth's current average temperature, and the albedo change by 2100 will increase the Earth's temperature by about 0.18° C.

Time Period	Change in Radiative	Equivalent Emissions	Atmospheric CO2e	Temperature Increase for		
	Forcing (W/m ²)	(GTCO2e)	Change (PPM)	a Climate Sensitivity of 3.0		
1870-2100	0.31	409	23.6	0.18		
2011-2100	0.18	240	13.9	0.10		
2015-2100	0.16	220	12.7	0.10		
1870-3000	0.69	946	54.6	0.41		

The calculation was done in the following steps:

- 1. Adjust the weekly snow cover extent (SCE) data (for 1972-2015) to remove the area of permanent snow cover
- 2. Calculate rough weekly values for both the 1970 snow cover extent and for the average SCE loss from a linear fit of the adjusted snow cover extent and "smooth" these "rough" values to provide the data for the analysis
- 3. Calculate weekly decadal snow cover extents for 1970- and use the 1970 values as the "historical SCE" for the analysis
- 4. Estimate the land area per degree latitude in the Northern Hemisphere for 45° N to 70° N
- 5. Estimate the "percent effective solar radiation" for each degree of latitude for 30° N to 89° N for every seven days between 3/4/2015 and 9/23/2015
- 6. For each decade and each week, determine the "effective area" of the change in SCE by estimating the latitude where the change occurred and multiplying the corresponding "percent effective solar radiation" by the change in SCE
- 7. For each decade, sum the "effective areas" of the change in SCE and calculate the expected albedo change for the entire year.

Background

In the Northern Hemisphere winter, snow covers large parts of North America, Europe, Asia, and Greenland (see Figure 1). In addition, the snow cover extent (SCE) varies considerably during the year (see Figure 2). There is not a lot of data on the historical snow cover extent prior to 1968 but by examining the available data for SCE after 1920 (see Figure 3), a reasonable assumption is that the SCE, while quite variable from year to year, shows very little overall change from 1920 to 1970, at which point the SCE begins to decline. In addition, a weekly set of snow cover extent data from 1972 to 2015^4 enables the analysis of SCE trends after 1970: "[T]rend analysis results of the updated snowcover extent (SCE) series have been used to show that the NH spring snow cover has undergone significant reductions over the past 90 years and that the rate of decrease has accelerated over the past 40 years. In particular, the SCE has been reduced by $0.8 \times 106 \text{ km2/decade}$ (7% in March and 11% in April and very likely between 4.5 and 9.5% in March and between 8.5 and 13.5% in April) for the period 1970–2010 [(see Figure 4)]... Spring (March, April, and May) snow-covered areas have

been declining at a rate that is even greater than predicted by the Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model [(see Figure 5)]" 1 .

(The "Analysis" section starts on Page 6 below - after the following five figures.)

Figure 2. Mean spatial distribution of seasonal SCE over Northern Hemisphere lands. Each season is calculated using 3-month means. These maps illustrate seasonal variability, with maximum mean SCE occurring in winter. The data period used to calculate means spans the period from January 1981 to December 2010.

Figure 1 – Snow Cover Extent in the Northern Hemisphere²

Figure 2 – Annual Cycle of Northern Hemisphere Snow Cover Extent³

Figure 3 – Changes in the snow cover extent since 1920^4

Figure 4 – Trends in NH Spring Snow Cover Extent⁶

Fig. 7. Projected NH March–April average seasonal snow cover extent (RSCE, relative to the 1986–2005 reference period) for the different RCP scenarios (blue: RCP2.6; green: RCP4.5; yellow: RCP6.0; red: RCP8.5), multi-model average over all available models for each scenario. The 5-yr running average ensemble mean is taken for each individual model before the multi-model average is calculated. Intermodel spread is represented as plus or minus one standard deviation from the multi-model mean.

Figure 5 – CMIP5 – Projected NH March–April Average Snow Cover Extent⁷

Analysis

The following analysis uses the "post 1971" snow cover extent data⁵ to develop a "back-of-the-envelop" calculation to estimate the magnitude of impact of the albedo change this century. The following assumptions were made when performing the analysis:

- 1. Any snow cover extent can be represented as occupying all of the land north of the latitude for which the land area matches snow cover extent
- 2. The "relative albedo" of a square kilometer of land for a week at a specific latitude is the ratio of the "effective solar radiation" at that latitude to the "effective solar radiation" at the North Pole on the solstice
- 3. An annual average albedo change of .5 for 5.1k m-2 of surface area in the Arctic Circle would change the Earth's albedo by .005.
- 4. The reduction in snow cover extent will be linear and will follow the same trajectory as it did from 1972 to 2015. (The actual decline is apt to be exponential, so this analysis probably underestimates the change for 2100.)

The data was analyzed as follows:

1. Adjust the weekly snow cover extent (SCE) data (for 1972-2015) to remove the area of permanent snow cover

The weekly snow cover extent is taken from the Rutgers University "Global Snow Lab" Web site⁵. Because of the glaciers in Greenland, Alaska, etc., there is a minimum amount of land that the snow will always cover. Greenland is about 2.166 m km² and the minimum snow cover extent since 1967 was about 2.027 m km² (for a week in August 1968). The most recent minimum snow cover extent was about 2.063 m km² (for a week in July 2012). So a reasonable minimum snow cover extent for the rest of the century is about 2.0 m km². (The advantages of adjusting the SCE are that the SCE decline can be measured as a percentage of the potential area that can become snow free and that the adjusted SCE will reach 0 for some months.)

Week#			1972	1973	1974		Week#			1972	1973	1974			
14	Apr	1	36721023	36995784	34591752		14	Apr	1	34721023	34995784	32591752			
15		8	32153818	34333488	31430048	,	15		8	30153818	32333488	29430048			
16		15	27343230	31074989	30302116	,	16		15	25343230	29074989	28302116			
17		23	25716885	23242354	27191135	,	17		23	23716885	21242354	25191135			
18		29	24290300	23385872	26301453	,	18		29	22290300	21385872	24301453			
19	May	6	21471274	22912852	27016525	,	19	May	6	19471274	20912852	25016525			
20		13	15529896	22198314	22007073	,	20		13	13529896	20198314	20007073			
21		20	17794150	19341261	20695474	,	21		20	15794150	17341261	18695474			
22		27	16781787	13853751	17438058		22		27	14781787	11853751	15438058			
23	June	3	13555127	12725527	13514928	,	23	June	3	11555127	10725527	11514928			
24		10	10882870	13538212	14850954		24		10	8882870	11538212	12850954			
25		17	7686018	10662906	8570264		25		17	5686018	8662906	6570264			
Snow cover extent by year and week (km ²) ⁵							Adjusted Snow cover extent by year and week (km ²)								

Table 1 - A Subset of the SCE Data Showing the Adjusted Values

2. Calculate rough weekly values for both the 1970 snow cover extent and for the average SCE loss from a linear fit of the adjusted snow cover extent

Since there is weekly SCE data from 1972 through 2015⁵, that data can be used to estimate both the historical SCE (based on the expected values for 1970) and the average decline in the SCE since 1970 by determining the best "linear fit" for the weekly SCE from 1972 to 2015. Both values can then be "smoothed" to provide that data needed for the analysis (see Figures 5 and 6).

Week#	Raw	Smoothed	50000000	
8	43001000	43818465		
9	42001600	42457605		
10	41229300	40907825	45000000	
11	40086400	39189832		\
12	38052000	37324334		
13	35723500	35332035	40000000	
14	33742400	33233643		
15	30955500	31049864		
16	28626600	28801404	35000000	
17	25796400	26508970		
18	23606700	24193268	20000000	
19	21552600	21875005	30000000	
20	18755100	19574887		
21	17501500	17313620	25000000	
22	15559600	15111911	25000000	
23	13735500	12990467		Raw Data
24	11470700	10969993	20000000	
25	8796190	9071196		
26	6751690	7314783		
27	4874840	5721460	15000000	
28	3640590	4311933		
29	2792070	3106909		
30	2348840	2127095	10000000	
31	2321560	1393196		
32	1840270	925919		
33	1586050	745970	5000000	
34	1518710	874057		
35	1568820	1330885		
36	1810570	2137160	0	8 10 12 14 15 18 20 22 24 25 28 30 32 34 35 38 40 42
37	2563740	3313590		8 10 12 14 10 18 20 22 24 20 28 50 52 54 50 58 40 42
38	3805070	4880880		
39	6395770	6859738		
40	9506240	9270869		
41	11982900	12134979		
42	16127300	15472776		

Figure 6 – Weekly Snow Cover Extents – the "Y" intercept for 1972, which is then used to specify the historical SCE

Figure 7 – Weekly Snow Cover Loss – the "slope" for each week, which is then used to specify the snow loss per year for each week

Figure 8 – Annual Percent Change in the Snow Cover Extent

3. Calculate weekly decadal snow cover extents for 1970-2100

Based on the "smoothed" values derived in Step 2 above, calculate the SCE for 1970 ("Historical") through 2100 (assume a linear decline of the value from Figure 7 from the starting value in Figure 6, with the calculated value never going below zero).

	,															
Wk			1970	1980	1990	2000	2010	2020	2030	2040	2050	2060	2070	2080	2090	2100
10	Mar	4	40.9	40.5	40.1	39.7	39.3	38.9	38.5	38.2	37.8	37.4	37.0	36.6	36.2	35.8
11		11	39.2	38.8	38.4	38.0	37.6	37.2	36.8	36.5	36.1	35.7	35.3	34.9	34.5	34.1
12		18	37.3	36.9	36.5	36.1	35.7	35.3	34.9	34.5	34.1	33.7	33.3	32.9	32.5	32.1
13		25	35.3	34.9	34.5	34.1	33.6	33.2	32.8	32.4	31.9	31.5	31.1	30.7	30.2	29.8
14	Apr	1	33.2	32.8	32.3	31.8	31.4	30.9	30.5	30.0	29.5	29.1	28.6	28.1	27.7	27.2
15		8	31.0	30.5	30.0	29.5	29.0	28.5	27.9	27.4	26.9	26.4	25.9	25.4	24.8	24.3
16		15	28.8	28.2	27.6	27.0	26.5	25.9	25.3	24.7	24.1	23.5	22.9	22.3	21.8	21.2
17		23	26.5	25.8	25.2	24.5	23.8	23.1	22.5	21.8	21.1	20.4	19.8	19.1	18.4	17.7
18		29	24.2	23.4	22.6	21.8	21.1	20.3	19.5	18.7	17.9	17.1	16.4	15.6	14.8	14.0
19	May	6	21.9	21.0	20.1	19.1	18.2	17.3	16.4	15.5	14.6	13.7	12.8	11.9	10.9	10.0
20		13	19.6	18.5	17.5	16.4	15.3	14.3	13.2	12.2	11.1	10.0	9.0	7.9	6.9	5.8
21		20	17.3	16.1	14.8	13.6	12.4	11.2	9.9	8.7	7.5	6.2	5.0	3.8	2.5	1.3
22		27	15.1	13.7	12.3	10.8	9.4	8.0	6.5	5.1	3.7	2.3	0.8	0.0	0.0	0.0
23	June	3	13.0	11.3	9.7	8.0	6.4	4.7	3.1	1.4	0.0	0.0	0.0	0.0	0.0	0.0
24		10	11.0	9.5	8.0	6.5	5.1	3.6	2.1	0.6	0.0	0.0	0.0	0.0	0.0	0.0
25		17	9.1	7.8	6.5	5.3	4.0	2.8	1.5	0.2	0.0	0.0	0.0	0.0	0.0	0.0
26		24	7.3	6.2	5.2	4.1	3.0	1.9	0.9	0.0	0.0	0.0	0.0	0.0	0.0	0.0
27	Jul	1	5.7	4.8	3.9	3.0	2.1	1.2	0.3	0.0	0.0	0.0	0.0	0.0	0.0	0.0
28		8	4.3	3.5	2.8	2.0	1.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
29		15	3.1	2.5	1.8	1.2	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
30		23	2.1	1.6	1.1	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
31		29	1.4	0.9	0.5	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
32	Aug	5	0.9	0.6	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
33		12	0.7	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
34		19	0.9	0.6	0.4	0.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
35		26	1.3	1.1	0.9	0.8	0.6	0.4	0.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0
36	Sept	2	2.1	2.0	1.9	1.7	1.6	1.4	1.3	1.1	1.0	0.9	0.7	0.6	0.4	0.3
37		9	3.3	3.2	3.1	3.0	2.9	2.8	2.7	2.6	2.5	2.5	2.4	2.3	2.2	2.1
38		16	4.9	4.8	4.8	4.7	4.7	4.6	4.6	4.5	4.5	4.4	4.4	4.3	4.3	4.2
39		23	6.9	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.8	6.7	6.7	6.7

Table 2 - Projected Snow Cover Extent (millions of square kilometers –used here so that all of the data can be displayed)

4. Estimate the land area per degree latitude in the Northern Hemisphere for 45° N to 70° N

To a very rough approximation, the land area (not including Greenland) inside the Arctic Circle is little larger than the area between the Arctic Circle (66°34') and 70° (see below). South of the Arctic Circle to about 45°N, the land comprises about 2/3 of the surface area. Based on this the "land area" per degree and total land area north of each degree of latitude can be computed (see below)

Figure 9 – Map of the Arctic Region Showing the Arctic Circle (dashed line) and 70° N (solid black line)

			Two					Two		
			Thirds	Land	Land Area			Thirds	Land	Land Are
		Circle	of Circle	Area Per	North Of		Circle	of Circle	Area Per	North C
La	atitude	Length	Length*	Degree	Latitude	Latitude	Length	Length*	Degree	Latitude
	45	28337	18891	2,096,915	42,328,186	58	21236	14157	1,571,468	18,118,7
	46	27838	18559	2,059,999	40,231,272	59	20640	13760	1,527,338	16,547,2
	47	27330	18220	2,022,456	38,171,273	60	20037	13358	1,482,743	15,019,9
	48	26815	17877	1,984,297	36,148,817	61	19428	12952	1,437,696	13,537,2
	49	26291	17527	1,945,533	34,164,520	62	18814	12542	1,392,211	12,099,5
	50	25759	17173	1,906,177	32,218,987	63	18193	12129	1,346,302	10,707,3
	51	25219	16813	1,866,240	30,312,810	64	17567	11712	1,299,983	9,361,0
	52	24672	16448	1,825,735	28,446,569	65	16936	11291	1,253,268	8,061,0
	53	24117	16078	1,784,673	26,620,835	66	16300	16300	1,809,257	6,807,7
	54	23555	15703	1,743,068	24,836,161	67	15658	15658	1,738,061	4,998,4
	55	22986	15324	1,700,932	23,093,093	68	15012	15012	1,666,335	3,260,43
	56	22409	14939	1,658,278	21,392,160	69	14361	14361	1,594,102	1,594,1
	57	21826	14551	1,615,119	19,733,882	70	13706	13706	0	
						*Not used	d for area c	alcs for $\overline{66}$	degrees to 7	0 degrees

Table 3 - Total land area north of each degree of latitude

0

Land Area North Of Latitude 18,118,763

16,547,296

15,019,958

13,537,215

12,099,520

10,707,309

9,361,007

8,061,024

6,807,756 4,998,499

3,260,438

1,594,102

5. Estimate the "percent effective solar radiation" for each degree of latitude for 30° N to 89° N for every seven days between 3/4/2015 and 9/23/2015

The daily solar radiation for 30-89 Degrees North for every seven days between 3/4/2015 and 9/23/2015 was computed using the vba code in the spreadsheet "solrad.xls"⁸. The "percent effective solar radiation" was then determined by calculating the ratio of each day's solar radiation to the maximum solar radiation (493).

Degrees N	4/1	8	15	22	29		Degrees N	4/1	8	15	22	29
50	263	278	291	303	315		50	53	56	59	61	64
51	261	276	290	302	314		51	53	56	59	61	64
52	259	274	288	301	314		52	53	56	58	61	64
53	256	272	286	300	313		53	52	55	58	61	63
54	253	269	285	299	312		54	51	55	58	61	63
55	250	267	283	298	312		55	51	54	57	60	63
56	247	265	281	297	311		56	50	54	57	60	63
57	244	262	279	295	310		57	49	53	57	60	63
58	241	260	277	294	309		58	49	53	56	60	63
59	238	257	275	292	308		59	48	52	56	59	62
60	235	254	273	291	307		60	48	52	55	59	62
Daily solar radiation						Percent effective solar radiation						

For example, the following calculations are for 50°N to 60°N for the month of April 2015

Table 4 – Solar Radiation for 50°N to 60°N

6. For each decade and each week, determine the "effective area" of the change in SCE by estimating the latitude where the change occurred and multiplying the corresponding "percent effective solar radiation" by the change in SCE

The first step is to determine the southern-most latitude that includes the historical SCE. Based on the change in area of SCE, the latitude to the south of the change is then determined. The fraction of the area within each latitude "band" is determined to calculate the area in the latitude band that is now snow-free. This area is multiplied by the effective solar radiation percent to compute the "effective area" for the week (where the "effective area" is the area at the North Pole that would have the same total solar radiation). For example, data for the week of April 15, 1980 is as follows:

Figure 10 – Calculation of "Effective Area"

7. For each decade, sum the "effective areas" of the change in SCE and calculate the expected albedo change for the entire year.

Given these parameters:

- 0.9 Albedo of snow
- 0.25 Albedo of "Tundra"
- 0.65 Change in albedo
- 3.4 W/m-2 / .01 albedo change
- 510 million km² surface area for the Earth

17.3429 Gigatons of CO2 emissions per PPM of atmospheric CO2 (airborne fraction = 45%)

The following computations can be made:

	Ef	fective Rad (W/m	diative For -2)	cing	Equiv. CO2e PPM			Equiv CO2 Em. (GTCO2)			Temp. Increase (70% Cloud Cover)		
			Cloud Co	over %	Cloud Co	Cloud Cover %			over %		Clim. Sensitivity		
Year	Effective Area (m km2)	Yearly Albedo Change	70	80	70	80		70	80		2.6	3.1	
1980	0.26	0.25689	0.03	0.02	2.2	1.3		38	23		0.01	0.02	
1990	0.52	0.51476	0.07	0.05	4.7	3.0		82	52		0.03	0.04	
2000	0.78	0.76938	0.10	0.07	7.3	4.7		126	82		0.05	0.06	
2010	1.02	1.01409	0.13	0.09	9.7	6.3		168	110		0.06	0.08	
2020	1.26	1.24905	0.16	0.11	12.1	7.9		209	137		0.08	0.09	
2030	1.49	1.47248	0.19	0.13	14.3	9.4		249	163		0.09	0.11	
2040	1.69	1.67635	0.22	0.15	16.4	10.8		285	186		0.11	0.13	
2050	1.85	1.82930	0.24	0.16	18.0	11.8		312	204		0.12	0.14	
2060	1.97	1.94732	0.26	0.17	19.2	12.6		333	218		0.12	0.15	
2070	2.09	2.06529	0.27	0.18	20.4	13.4		354	232		0.13	0.16	
2080	2.20	2.17436	0.29	0.19	21.5	14.1		374	245		0.14	0.17	
2090	2.29	2.27181	0.30	0.20	22.5	14.8		391	256		0.15	0.17	
2100	2.39	2.36934	0.31	0.21	23.6	15.4		409	268		0.15	0.18	
3000	5.30	5.24771	0.69	0.46	54.6	35.5		946	615		0.35	0.42	

Table 5 – Results by Decade

- The year 3000 is used to specify a completely snow free NH after March 1
- The "Effective Area" is the sum of the weekly "effective areas" / 52 (to get the average "effective area" for the entire year)
- The "Yearly Albedo Change" is the computed by multiplying the "Change in albedo" by the ratio of the "Effective Area" to the Earth's surface area
- The "Effective Radiative Forcing" (ERF) for a cloud cover percent is computed using the formula "Yearly Aledo Change"*((100-cloud cover pct)/100)*(3.4 W/m-2 / .01 albedo change)
- The "Equivalent CO2 PPM" = 275 * POWER(2.718,(ERF+2)/5.35) 400 (the ERF for 400PPM is 2 W/m-2 so this formula computes the change in ERF above the current value of 2)
- The "Equiv CO2 Emissions" = "Equivalent CO2 PPM" * 7.80432 GTCO2 per PPM/ ("Airborne Fraction of emitted CO2 which stay in the atmosphere" = 0.45)

Footnotes

1	WIREs Clim Change 2014, 5:389–409. doi: 10.1002/wcc.277
2	http://www.earth-syst-sci-data.net/7/137/2015/essd-7-137-2015.pdf
3	https://nsidc.org/cryosphere/sotc/snow_extent.html
4	https://twitter.com/MichaelEMann/status/704345939331440642/photo/1
5	http://climate.rutgers.edu/snowcover/table_area.php?ui_set=0&ui_sort=0
	Robinson, David A., Estilow, Thomas W., and NOAA CDR Program (2012):NOAA Climate Date Record
	(CDR) of Northern Hemisphere (NH) Snow Cover Extent (SCE), Version 1. [Weekly data]. NOAA
	National Climatic Data Center. doi:10.7289/V5N014G9 [3/1/2016].
6	http://onlinelibrary.wiley.com/doi/10.1002/wcc.277/pdf
	WIREs Clim Change 2014, 5:389–409. doi: 10.1002/wcc.277
7	http://www.the-cryosphere.net/7/67/2013/tc-7-67-2013.pdf
8	http://rredc.nrel.gov/solar/codesandalgorithms/links.html
	Solar position using VBA translation of NOAA's functions.
	Solar radiation from Bird and Hulstrom's model.
	by
	Greg Pelletier
	Department of Ecology
	Olympia WA
	e-mail: gpel461@ecy.wa.gov
	Bird model direct radiation normal to the beam at the earth surface (W/m2)